Nuclear Reaction Networks


Astronomy research
Software instruments
   Stellar equation of states
   EOS with ionization
   EOS for supernovae
   Chemical potentials
   Stellar atmospheres

   Voigt Function
   Jeans escape
   Polytropic stars
   Cold white dwarfs
   Hotter white dwarfs

   Cold neutron stars
   Stellar opacities
   Neutrino energy loss rates
   Ephemeris routines
   Fermi-Dirac functions

   Galactic chemical evolution
   Coating an ellipsoid
   Universal two-body problem

   Nuclear reaction networks
   Nuclear statistical equilibrium
   Laminar deflagrations
   CJ detonations
   ZND detonations

   Fitting to conic sections
   Unusual linear algebra
   Derivatives on uneven grids
   Pentadiagonal solver
   Quadratics, Cubics, Quartics

   Supernova light curves
   Exact Riemann solutions
   1D PPM hydrodynamics
   Verification problems
   Plane - cube Intersection

   The pendulum
   Circular and elliptical 3 body


   Zingale's software
   Brown's dStar
   GR1D code
   Iliadis' STARLIB database
   Herwig's NuGRID
   Meyer's NetNuc
Bicycle adventures

AAS Journals
2019 JINA R-process Workshop
2019 MESA Marketplace
2019 MESA Summer School
2019 AST111 Earned Admission
Teaching materials
Education and Public Outreach

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

Before using these reaction networks you should probably glance at my method of madness, Raph Hix's & Brad Meyer's excellent article, Brad Meyer's annual review article, George Wallerstein's review of modern physics article, and my 2009 National Nuclear Physics Summer School lectures on reaction networks.

There is a certain irremovable complexity associated with stiff systems of ordinary differential equations $$ \dot {{\bf y}} = {\bf f} \ ({\bf y}) \label{eq1} \tag{1} $$ when the right hand side is a complicated function, the Jacobian matrix $\tilde{{\bf J}}$ is sparse, and you want to do a high quality integration. The routines below use an analytical Jacobian, a variable-order Bader-Deuflhard integration method, and MA28 sparse linear algebra. The reaction network and thermodynamics are integrated simultaneously. That is, they are fully coupled. Hydrostatic, one-step, adiabatic expansion, self-heating at constant density, self-heating through constant pressure, and arbitrary thermodynamic histories are currently supported.

These reaction networks are not toys; they are a snapshot of my current research tools. If you want to put these reaction networks in a hydrodynamics code and/or you want the networks to execute as efficiently as possible, send a message to me.

Make H & He

* Big Bang
Burn hydrogen

* pp chains

* cno cycles

* pp + cno

* hotcno + rp

* pp+hotcno+rp

* 8 isotopes

* 7 isotopes

* 13 isotopes

* 19 isotopes

* 21 isotopes

* Full H + He

Eat neutrons

* s-process
General network

* torch


Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.