

Home Astronomy research Software instruments Stellar equation of states EOS with ionization EOS for supernovae Chemical potentials Stellar atmospheres Voigt Function Jeans escape Polytropic stars Cold white dwarfs Hotter white dwarfs Cold neutron stars Stellar opacities Neutrino energy loss rates Ephemeris routines FermiDirac functions Galactic chemical evolution Coating an ellipsoid Universal twobody problem Nuclear reaction networks Nuclear statistical equilibrium Laminar deflagrations CJ detonations ZND detonations Fitting to conic sections Unusual linear algebra Derivatives on uneven grids Pentadiagonal solver Quadratics, Cubics, Quartics Supernova light curves Exact Riemann solutions 1D PPM hydrodynamics Verification problems Plane  cube Intersection Phyllotaxis The pendulum Circular and elliptical 3 body MESA MESAWeb FLASH Zingale's software Brown's dStar GR1D code Iliadis' STARLIB database Herwig's NuGRID Meyer's NetNuc Presentations Illustrations Videos Bicycle adventures AAS Journals 2017 MESA Marketplace 2017 MESA Summer School 2017 ASU+EdX AST111x Teaching materials Education and Public Outreach Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. 
Before using these reaction networks you should probably glance at my method of madness, Raph Hix's & Brad Meyer's excellent article, Brad Meyer's annual review article, George Wallerstein's review of modern physics article, and my 2009 National Nuclear Physics Summer School lectures on reaction networks. There is a certain irremovable complexity associated with stiff systems of ordinary differential equations $$ \dot {{\bf y}} = {\bf f} \ ({\bf y}) \label{eq1} \tag{1} $$ when the right hand side is a complicated function, the Jacobian matrix $\tilde{{\bf J}}$ is sparse, and you want to do a high quality integration. The routines below use an analytical Jacobian, a variableorder BaderDeuflhard integration method, and MA28 sparse linear algebra. The reaction network and thermodynamics are integrated simultaneously. That is, they are fully coupled. Hydrostatic, onestep, adiabatic expansion, selfheating at constant density, selfheating through constant pressure, and arbitrary thermodynamic histories are currently supported. These reaction networks are not toys; they are a snapshot of my current research tools. If you want to put these reaction networks in a hydrodynamics code and/or you want the networks to execute as efficiently as possible, send a message to me.



Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer coauthorship as appropriate. 
