Cococubed.com Galactic Chemical Evolution

Home

Astronomy research
Software instruments
Stellar equation of states
EOS with ionization
EOS for supernovae
Chemical potentials
Stellar atmospheres

Voigt Function
Jeans escape
Polytropic stars
Cold white dwarfs

Cold neutron stars
Stellar opacities
Neutrino energy loss rates
Ephemeris routines
Fermi-Dirac functions

Polyhedra volume
Plane - cube intersection
Coating an ellipsoid

Nuclear reaction networks
Nuclear statistical equilibrium
Laminar deflagrations
CJ detonations
ZND detonations

Fitting to conic sections
Unusual linear algebra
Derivatives on uneven grids

Supernova light curves
Exact Riemann solutions
1D PPM hydrodynamics
Hydrodynamic test cases
Galactic chemical evolution

Universal two-body problem
Circular and elliptical 3 body
The pendulum
Phyllotaxis

MESA
MESA-Web
FLASH

Zingale's software
Brown's dStar
GR1D code
Herwig's NuGRID
Meyer's NetNuc
Presentations
Illustrations
Public Outreach
Education materials

AAS Journals
2020 Celebration of Margaret Burbidge
2020 Digital Infrastructure
2021 MESA Marketplace
2021 MESA Summer School
2021 ASU Solar Systems
2021 ASU Energy in Everyday Life

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

"Zone models" of galactic chemical evolution usually assert the abundance $N$ of an isotope $i$ follows $$\frac{dN_i}{dt} = \rm{death} \ - \ \rm {birth} \ + \ \rm {infall} \ + \ \rm {decay} \ . \label{eq1} \tag{1}$$ The death term (representing supernovae, kilonovae, classical novae, etc) is a sum of retarded time birth terms (stars born yesterday die today) , giving rise to a system of integro-differential equations $$\begin{split} \frac{dN_i}{dt} & = \int_{M_{lo}}^{M_{hi}} B(t - \tau(m)) \ \Psi(m) \ N_i (t-\tau(m)) \ dm \\ & - \ B(t) \ \frac{N_i}{N_{\rm{gas}}} + \ {\dot N}_{i,\rm{gas}} + \frac{N_i}{\tau_{1/2,i}} \qquad {\rm M}_{\odot} \ {\rm pc}^{-3} \ {\rm Gyr}^{-1} \ , \end{split} \label{eq2} \tag{2}$$ where $B(t)$ is the birth rate, $\tau(m)$ is the stellar lifetime, $\Psi(m)$ is the initial mass function, $N_{\rm{gas}}$ is the total surface gas density, ${\dot N}_{i,\rm{gas}}$ is the mass accretion rate, and $\tau_{1/2,i}$ is the half-life of the isotope.

The tool chem3.tgz solves this system of integro-differentials. The tool includes a plain text nucleosynthesis data file, which one can easily modify, that contains isotopic contributions from Type II supernovae (Woosley & Weaver 1995), low mass stars (Renzini & Voli 1986), six different Type Ia supernovae models, three different classical novae models, and Big Bang nucleosynthesis.

Hydrogen Through Zinc

The chemical evolution of 76 stable isotopes, from hydrogen to zinc, is presented in this article. A grid of 60 Type II supernova models of varying mass (11 ≤ M/M ≤ 40) and metallicity (0, 10-4, 0.01, 0.1, and 1 Z), is coupled with a simple dynamical model for the Milky Way. The results are compared in detail with the inferred atmospheric abundances for stars with metallicities in the range -3.0 ≤ [Fe/H] ≤ 0.0 dex. Sampled 4.6 billion years ago at a distance of 8.5 kpc, we find a composition at the solar circle that is within a factor of two of the solar abundances:

Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.