*
Cococubed.com


Coating an ellipsoid

Home

Astronomy research
Software instruments
   Stellar equation of states
   EOS with ionization
   EOS for supernovae
   Chemical potentials
   Stellar atmospheres

   Voigt Function
   Jeans escape
   Polytropic stars
   Cold white dwarfs
   Adiabatic white dwarfs

   Cold neutron stars
   Stellar opacities
   Neutrino energy loss rates
   Ephemeris routines
   Fermi-Dirac functions

   Polyhedra volume
   Plane - cube intersection
   Coating an ellipsoid

   Nuclear reaction networks
   Nuclear statistical equilibrium
   Laminar deflagrations
   CJ detonations
   ZND detonations

   Fitting to conic sections
   Unusual linear algebra
   Derivatives on uneven grids
   Pentadiagonal solver
   Quadratics, Cubics, Quartics

   Supernova light curves
   Exact Riemann solutions
   1D PPM hydrodynamics
   Hydrodynamic test cases
   Galactic chemical evolution

   Universal two-body problem
   Circular and elliptical 3 body
   The pendulum
   Phyllotaxis

   MESA
   MESA-Web
   FLASH

   Zingale's software
   Brown's dStar
   GR1D code
   Iliadis' STARLIB database
   Herwig's NuGRID
   Meyer's NetNuc
Presentations
Illustrations
cococubed YouTube
Bicycle adventures
Public Outreach
Education materials

AAS Journals
AAS Youtube
2020 Celebration of Margaret Burbidge
2020 Digital Infrastructure
2021 MESA Marketplace
2021 MESA Summer School
2021 ASU Solar Systems
2021 ASU Energy in Everyday Life


Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

Let's start from something familiar and then generalize it. Consider sphere of radius r. Increase the radius by a distance d. The new volume is \begin{equation} \dfrac{4}{3} \pi (r + d)^3 = \dfrac{4}{3} \pi (r^3 + 3 r^2 d + 3 r d^2 + d^3) = \dfrac{4}{3} \pi r^3 + 4 \pi r^2 d + 4 \pi r d^2 + \dfrac{4}{3} \pi d^3 \ . \label{1} \tag{1} \end{equation} So the volume of the coating (shell) is \begin{equation} {\rm Volume_{new}} - {\rm Volume_{old}} = {\rm Volume_{coat}} = 4 \pi r^2 d + 4 \pi r d^2 + \dfrac{4}{3} \pi d^3 \label{2} \tag{2} \end{equation} or in terms of the polynomial $d$, \begin{equation} {\rm Volume_{coat}} = ({\rm old\ surface\ area} \times d) + (\pi \cdot {\rm mean \ length} \times d^2) + \left(\dfrac{4}{3} \pi \times d^3\right) \ , \label{3} \tag{3} \end{equation} which is Steiner's formula for any convex shape expanded by a distance d along the surface normals in 3D. Note growth along surface normals is not the same as scaling the object to a bigger size - only for a sphere are the two equivalent. An amazing fact is Steiner's formula for the polynomial in d is valid for any expanding convex shape - spheres, ellipsoids, cubes, whatever. For small $d$, the first term dominates - the thin shell approximation. Blow anything up large enough along the surface normals and it looks like a sphere, the third term. These two limits are connected by the second term, the "mean width", which geometrically is a mean curvature (units of 1/length) times a surface area: \begin{equation} \ell = \frac{1}{\pi} \int_S H \ {\rm d}A \label{4} \tag{4} \end{equation} For a sphere, the mean curvature is $H = 1/2 \cdot (1/r + 1/r) = 1/r$. The mean width is then $\ell = 1/(\pi) \cdot 1/r \cdot 4 \pi r^2 = 4 r$, which is twice the more intuitive average Euler width of $2 r$. This gives the second term on the right hand side of equation $\ref{3}$ as $4\pi r d^2$, which agrees with second term on the right-hand side of equation $\ref{2}$.

For an ellipsoid in standard form, \begin{equation} \left ( \dfrac{x}{a} \right )^2 + \left ( \dfrac{y}{b} \right )^2 + \left ( \dfrac{z}{c} \right )^2 = 1 \label{5} \tag{5} \end{equation} The volume is \begin{equation} {\rm V = \dfrac{4}{3} \pi \ a b c } \label{6} \tag{6} \end{equation} From the first fundamental form for the ellipsoid, the surface area is \begin{equation} \begin{split} A(a,b,c) & = \int_S \sqrt{EG - F^2} \\ & = a b c \int_0^{2\pi} \int_0^{\pi} \sqrt{ (a^{-2} \cos^2v + b^{-2} \sin^2v) \sin^2u + c^{-2} \cos^2u} \sin u \ {\rm d}u {\rm d}v \\ & = 2 \pi c^2 + \dfrac{2 \pi a b}{\sin(\phi)} \cdot [ E(\phi,k) \sin^2(\phi) + F(\phi,k) \cos^2(\phi) ] \, \end{split} \label{7} \tag{7} \end{equation} where $\cos(\phi) = c/a$, $k^2 = a^2/b^2 \cdot (b^2 - c^2) / (a^2 - c^2)$, $F(\phi,k)$ is the Legendre form of the first incomplete elliptic integral, and $E(\phi,k)$ is the Legendre form of the second incomplete elliptic integral. Presumably one has the tools to numerically calculate these elliptic functions, hence the surface area, to near the precision of the chosen arithmetic. Note when $a=b=c$ that this expression reduces to the surface area of a sphere.

Using the second fundamental form for the mean curvature, the mean width is \begin{equation} \begin{split} \ell(a,b,c) &= \frac{1}{\pi} \int_S \frac{eG - 2fF + gE}{EG - F^2} \ {\rm d}A \\ &= \frac{1}{ \pi} \int_0^{2\pi} \int_0^{\pi} \sqrt{ (a^{2} \cos^2v + b^{2} \sin^2v) \sin^2u + c^{2} \cos^2u} \sin u \ {\rm d}u {\rm d}v \\ &= \dfrac{a b c}{\pi} \cdot A \left ( \frac{1}{a},\frac{1}{b},\frac{1}{c} \right ) \ . \end{split} \label{8} \tag{8} \end{equation} Wild! The mean width of an ellipsoid is akin to the volume of the ellipsoid times the surface area evaluated at the curvatures. Note when $a=b=c=r$ that this reduces to the mean length of a sphere, $\ell = 4r$.

The tool coating.f90.zip implements the above equations to calculate the volume of a coating, expanding along its normal, of a triaxial ellipsoid. The $a=b=c$ degenerate case of a sphere is included.


image
 



Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.