*
Cococubed.com


Cold White Dwarfs

Home

Astronomy research
Software instruments
   Stellar equation of states
   EOS with ionization
   EOS for supernovae
   Chemical potentials
   Stellar atmospheres

   Voigt Function
   Jeans escape
   Polytropic stars
   Cold white dwarfs
   Adiabatic white dwarfs

   Cold neutron stars
   Stellar opacities
   Neutrino energy loss rates
   Ephemeris routines
   Fermi-Dirac functions

   Polyhedra volume
   Plane - cube intersection
   Coating an ellipsoid

   Nuclear reaction networks
   Nuclear statistical equilibrium
   Laminar deflagrations
   CJ detonations
   ZND detonations

   Fitting to conic sections
   Unusual linear algebra
   Derivatives on uneven grids
   Pentadiagonal solver
   Quadratics, Cubics, Quartics

   Supernova light curves
   Exact Riemann solutions
   1D PPM hydrodynamics
   Hydrodynamic test cases
   Galactic chemical evolution

   Universal two-body problem
   Circular and elliptical 3 body
   The pendulum
   Phyllotaxis

   MESA
   MESA-Web
   FLASH

   Zingale's software
   Brown's dStar
   GR1D code
   Iliadis' STARLIB database
   Herwig's NuGRID
   Meyer's NetNuc
Presentations
Illustrations
cococubed YouTube
Bicycle adventures
Public Outreach
Education materials

AAS Journals
AAS Youtube
2020 Celebration of Margaret Burbidge
2020 Digital Infrastructure
2021 MESA Marketplace
2021 MESA Summer School
2021 ASU Solar Systems
2021 ASU Energy in Everyday Life


Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

The tool in coldwd.tbz generate models of stars in hydrostatic equilibrium with a cold electron Fermi gas equation of state: \begin{equation} \begin{split} x & = \left [ \dfrac{3}{8 \pi} \left ( \dfrac{h}{m_ec}\right )^3 N_A Y_e \rho \right ]^{1/3} \\ f(x) & = x (x^2 + 1)^{1/2}(2x^2 - 3) + 3\ln(x + (x^2 + 1)^{1/2}) \\ g(x) & = 8x^3 \left [ (x^2 + 1)^{1/2} -1) \right ] - f(x) \\ P_e & = \dfrac{\pi m_e^4 c^5}{3 h^3} \cdot f(x) \hskip 1.0in E_e = \dfrac{\pi m_e^4 c^5}{3 h^3} \cdot g(x) \end{split} \label{eq1} \tag{1} \end{equation} The derivatives of the pressure and energy with respct to the density is also returned by the equation of state module. A general relativistic Tolman-Oppenheimer-Volkoff (TOV) correction to the equation for hydrostatic equilibrium is avaliable as an option. A quote from Icko about generating white dwarf models comes to mind ...

The equations above suffer a loss of numerical precision for x ≪ 1 due to the subtraction of two terms. These expansions should be used instead \begin{equation} \begin{split} f(x) & = \frac{8}{5} x^5 - \frac{4}{7} x^7 + \frac{1}{3} x^9 - \frac{5}{22} x^{11} + \frac{35}{208} x^{13} - \frac{21}{160} x^{15} + \frac{231}{2176} x^{17} + \mathcal{O}(x^{19}) \\ g(x) & = \frac{12}{5} x^5 - \frac{3}{7} x^7 + \frac{1}{6} x^9 - \frac{15}{176} x^{11} + \frac{21}{416} x^{13} - \frac{21}{640} x^{15} + \frac{99}{4352} x^{17} + \mathcal{O}(x^{19}) \ . \end{split} \label{eq2} \tag{2} \end{equation} The first plot below shows the central density vs mass relationship between a cold electron Fermi gas equation of state and a polytropic equation of state. A cold electron Fermi gas at low central densities (x ≪ 1) approaches the well-known nonrelativistic form $P = 1.004 \times 10^{13} \ (Y_e \rho)^{5/3} \ {\rm erg} \ {\rm cm}^{-3}$, as can be seen by the leading order $x^5$ series expansion term for f(x) above. In this limit the electrons are well approximated by a n = 3/2, γ = 1 + 1 /n = 5/3 polytropic equation of state. A cold electron Fermi gas at high central densities (x ≫ 1) approaches the relativistic form $P = 1.2435 \times 10^{15} \ (Y_e \rho)^{4/3} \ {\rm erg} \ {\rm cm}^{-3}$, these expansions are in the source code for reference but are not used as they are not needed. In this limit the electrons are well approximated by a n = 3 γ = 1 + 1 /n = 4/3 polytropic equation of state – the celebrated Chandrasekhar limit.


image


image


image


 



Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.