*
Cococubed.com


Stellar Equations Of State

Home

Astronomy research
Software instruments
   Stellar equation of states
   EOS with ionization
   EOS for supernovae
   Chemical potentials
   Stellar atmospheres

   Voigt Function
   Jeans escape
   Polytropic stars
   Cold white dwarfs
   Hotter white dwarfs

   Cold neutron stars
   Stellar opacities
   Neutrino energy loss rates
   Ephemeris routines
   Fermi-Dirac functions

   Galactic chemical evolution
   Coating an ellipsoid

   Nuclear reaction networks
   Nuclear statistical equilibrium
   Laminar deflagrations
   CJ detonations
   ZND detonations

   Fitting to conic sections
   Unusual linear algebra
   Derivatives on uneven grids
   Pentadiagonal solver
   Quadratics, Cubics, Quartics

   Supernova light curves
   Exact Riemann solutions
   1D PPM Hydrodynamics
   Verification problems
   Plane - Cube Intersection

   Phyllotaxis
   The pendulum

   MESA
   MESA-Web
   FLASH

   Zingale's software
   Brown's dStar
   GR1D code
   Iliadis' STARLIB database
   Herwig's NuGRID
   Meyer's NetNuc
Presentations
Illustrations
Videos
Bicycle adventures

AAS Journals
2017 MESA Marketplace
2017 MESA Summer School
2017 ASU+EdX AST111x
Teaching materials
Education and Public Outreach


Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

Before using the six software instruments below, you should glance at the journal papers that describe them. The first law of thermodynamics $$ {\rm dE = T \ dS + {P\over \rho^2} \ d\rho} \label{eq1} \tag{1} $$ is an exact differential, which requires that the thermodynamic relations $$ \eqalignno { {\rm P} \ & = \ {\rm \rho^2 \ \dfrac{\partial E}{\partial \rho} \Biggm|_T \ + \ T \ \dfrac{\partial P}{\partial T} \Biggm|_{\rho} } & (2) \cr {\rm \dfrac{\partial E}{\partial T} \Biggm|_{\rho}} \ & = \ {\rm T \ \dfrac{\partial S}{\partial T} \Biggm|_{\rho} } & (3) \cr {\rm - \dfrac{\partial S}{\partial \rho} \Biggm|_T } \ & = \ {\rm {1 \over \rho^2} \ \dfrac{\partial P}{\partial T} \Biggm|_{\rho} } & (4) \cr } $$ be satisfied. An equation of state is thermodynamically consistent if all three of these identities are true. Thermodynamic inconsistency may manifest itself in the unphysical buildup (or decay) of the entropy (or temperature) during numerical simulations of what should be an adiabatic flow.

When the temperature and density are the natural thermodynamic variables to use, the appropriate thermodynamic potential is the Helmholtz free energy \begin{equation} {\rm F = E - T \ S} \hskip 0.5in {\rm dF = -S \ dT + {P \over \rho^2} \ d\rho} \label{eq5} \tag{5} \end{equation} With the pressure defined as $$ {\rm P \ = \ \rho^2 \ \dfrac{\partial F}{\partial \rho} \Biggm|_T } \label{eq6} \tag{6} $$ the first of the Maxwell relations (Eq. 2) is automatically satisfied, as substitution of Eq. (5) into Eq. (6) demonstrates. With the entropy defined as $$ {\rm S \ = \ -\dfrac{\partial F}{\partial T} \Biggm|_{\rho} } \label{eq7} \tag{7} $$ the second of the Maxwell relations (Eq. 3) is automatically satisfied, as substitution of Eq. (5) into Eq. (7) demonstrates. The requirement that the mixed partial derivatives commute $$ {\rm \dfrac{\partial^2 F}{\partial T \ \partial \rho} \ = \ \dfrac{\partial F}{\partial \rho \ \partial T} } \label{eq8} \tag{8} $$ ensures that the third of the thermodynamic identity (Eq. 4) is satisfied, as substitution of Eq. (5) into Eq. (8) shows.

Consider any interpolating function for the Helmholtz free energy $F(\rho,{\rm T})$ which satisfies Eq. (8). Thermodynamic consistency is guaranteed as long as Eq. (6) is used first to evaluate the pressure, Eq. (7) is used second to evaluate the entropy, and finally Eq. (5) is used to evaluate the internal energy. In fact, this procedure is almost too robust! The interpolated values may be a horribly inaccurate but they will be thermodynamically consistent.

Here then are bzip2 tarballs of six stellar interior equations of state:

helmholtz.tbz nadyozhin.tbz iben.tbz
weaver.tbz arnett.tbz timmes.tbz

The Helmholtz EOS implements the formalism above on a grid, executes the fastest (memory is faster than cpu), displays perfect thermodynamic consistency, and has a maximum error on the default grid of 10$^{-6}$. Helmholtz is the stellar EOS of choice in the FLASH software instrument and the backbone of the EOS module in the MESA software instrument. The Helmholtz free energy data file provided spans 10$^{-12}$ ≤ density (g cm$^{-3}$) ≤ 10$^{15}$ and 10$^{3}$ ≤ temperature (K) ≤ 10$^{13}$ at 20 points per decade. The Nadyozhin EOS is the fastest of the analytic routines, has very good thermodynamic consistency, a maximum error of 10$^{-5}$, and is avaliable in FLASH. The Timmes EOS is as slow as molasses during a North Dakota winter, but it computes the non-interacting electron-positron equation of state with no approximations, is exact to machine precision in IEEE double precision arithmetic, has excellent thermodynamic consistency, and serves as the reference point for comparisons to the other EOS routines. In fact, the Helmholtz free energy table used by the Helmholtz EOS is calculated from the Timmes EOS.

image
Pressure
image
Pressure differences
image
Thermodynamic consistency

 



Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.