Nuclear Statistical Equilibrium


Astronomy research
Software instruments
   Stellar equation of states
   EOS with ionization
   EOS for supernovae
   Chemical potentials
   Stellar atmospheres

   Voigt Function
   Jeans escape
   Polytropic stars
   Cold white dwarfs
   Adiabatic white dwarfs

   Cold neutron stars
   Stellar opacities
   Neutrino energy loss rates
   Ephemeris routines
   Fermi-Dirac functions

   Polyhedra volume
   Plane - cube intersection
   Coating an ellipsoid

   Nuclear reaction networks
   Nuclear statistical equilibrium
   Laminar deflagrations
   CJ detonations
   ZND detonations

   Fitting to conic sections
   Unusual linear algebra
   Derivatives on uneven grids
   Pentadiagonal solver
   Quadratics, Cubics, Quartics

   Supernova light curves
   Exact Riemann solutions
   1D PPM hydrodynamics
   Hydrodynamic test cases
   Galactic chemical evolution

   Universal two-body problem
   Circular and elliptical 3 body
   The pendulum


   Zingale's software
   Brown's dStar
   GR1D code
   Iliadis' STARLIB database
   Herwig's NuGRID
   Meyer's NetNuc
cococubed YouTube
Bicycle adventures
Public Outreach
Education materials

AAS Journals
AAS Youtube
2020 Celebration of Margaret Burbidge
2020 Digital Infrastructure
2021 MESA Marketplace
2021 MESA Summer School
2021 ASU Solar Systems
2021 ASU Energy in Everyday Life

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

Below $\simeq 10^6$ K it is not energetic enough for nuclear reactions. Up to $\simeq 5 \times10^9$ K one uses a nuclear reaction network to follow abundance evolutions. Above $\simeq 5 \times10^9$ K it is energetic enough for forward and reverse reactions to be balanced, and abundances are in a state of nuclear statistical equilibrium (NSE). For Maxwell-Boltzmann statistics, the mass fractions $X_i$ of any isotope $i$ in NSE is \begin{equation} X_i(A_i,Z_i,T,\rho) = {A \over N_A \rho} \omega(T) \left ( 2\pi kT M(A_i,Z_i) \over h^2 \right )^{3/2} \exp \left [ { \mu(A_i,Z_i) + B(A_i,Z_i) \over kT } \right ] \ , \label{eq1} \tag{1} \end{equation} where $A_i$ is the atomic number (number of neutrons + protons on the nulceus), $Z_i$ is the charge (number of protons), $T$ is the temperature, $\rho$ is the mass density, $N_A$ is the Avogardo number, $\omega(T)$ is the temperature dependent partition function, $M(A_i,Z_i)$ is the mass of the nucleus, $B(A_i,Z_i)$ is the binding energy of the nucleus, and $\mu(A_i,Z_i)$, in the simplest case, is the chemical potential of the isotope \begin{equation} \mu(A_i,Z_i) = Z_i\mu_p + N_i\mu_n = Z_i\mu_p + (A_i-Z_i) \mu_n \ , \label{eq2} \tag{2} \end{equation} where $\mu_p$ is the chemical potential of the protons, $\mu_n$ is the chemical potential of the neutrons. The mass fractions of equation $\ref{eq1}$ are subject to two constraints, conservation of mass (baryon number) and charge, which are expressed as \begin{equation} \sum_i X_i= 1 \hskip 1.0in Y_e = \sum_i {Z_j \over A_i} X_i \ . \label{eq3} \tag{3} \end{equation} Given the triplet of input values $(T, \rho, Y_e)$, an NSE solution boils down to a two-dimensional root find for the chemical potentials of the protons $\mu_p$ and neutrons $\mu_n$. Two constraints and two unknowns.

The tool in public_nse.tbz puts a 47 isotope netrork into its NSE state. More serious NSE calculations could modify this tool to use more accurate nuclear data (e.g., ground state spins and temperature dependent partition functions), to add more elaborate couplings (e.g., Coulomb corrections), and to increase the number of isotopes. Still, the figures and movies below, which accompany this article, suggest this tool gives reasonable results for the assumptions made.

Abundances vs temperature for varying Ye:
ρ = 103 g cm-3    d1p0e3_yevary_3302_a_pdf.mp4   
ρ = 104 g cm-3    d1p0e4_yevary_3302_a_pdf.mp4   
ρ = 105 g cm-3    d1p0e5_yevary_3302_a_pdf.mp4   
ρ = 106 g cm-3    d1p0e6_yevary_3302_a_pdf.mp4   
ρ = 107 g cm-3    d1p0e7_yevary_3302_a_pdf.mp4   
ρ = 108 g cm-3    d1p0e8_yevary_3302_a_pdf.mp4   
ρ = 109 g cm-3    d1p0e9_yevary_3302_a_pdf.mp4   
Abundances vs Ye for varying temperature :
ρ = 103 g cm-3    d1p0e3_tvary_3302_a_pdf.mp4   
ρ = 104 g cm-3    d1p0e4_tvary_3302_a_pdf.mp4   
ρ = 105 g cm-3    d1p0e5_tvary_3302_a_pdf.mp4   
ρ = 106 g cm-3    d1p0e6_tvary_3302_a_pdf.mp4   
ρ = 107 g cm-3    d1p0e7_tvary_3302_a_pdf.mp4   
ρ = 108 g cm-3    d1p0e8_tvary_3302_a_pdf.mp4   
ρ = 109 g cm-3    d1p0e9_tvary_3302_a_pdf.mp4   

Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.