*
Cococubed.com


ZND Detonations

Home

Astronomy research
Software instruments
   Stellar equation of states
   EOS with ionization
   EOS for supernovae
   Chemical potentials
   Stellar atmospheres
   Voigt Function
   Jeans escape
   Polytropic stars
   Cold white dwarfs
   Hotter white dwarfs
   Cold neutron stars
   Stellar opacities
   Neutrino energy loss rates
   Ephemeris routines
   Fermi-Dirac functions
   Galactic chemical evolution

   Nuclear reaction networks
   Nuclear statistical equilibrium
   Laminar deflagrations
   CJ detonations
   ZND detonations
   Fitting to conic sections
   Unusual linear algebra
   Derivatives on uneven grids
   Pentadiagonal solver
   Quadratics, Cubics, Quartics
   Supernova light curves
   Exact Riemann solutions
   1D PPM Hydrodynamics
   Verification problems
   Plane - Cube Intersection

   MESA
   MESA-Web
   FLASH

   Zingale's software
   Brown's dStar
   GR1D code
   Iliadis' STARLIB database
   Herwig's NuGRID
   Meyer's NetNuc
Presentations
Illustrations
Videos
Bicycle adventures

AAS Journals
2017 MESA Summer School
ASU+EdX AST111x
Teaching materials
Education and Public Outreach
2016 NSF SI2 PI Workshop


Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

Zeldovich, Von Neumann, and Doring (ZND, 1943) independently formed a set of differential equations for a 1D detonation which overcame the deficiencies of the Chapman-Jouget detonation model:
png image of znd equations
The ZND solution gives the:
• width of the fuel-ash region
• spatial variation of the hydrodynamic and thermodynamic variables
• the self-sustating detonation solution
• global integrals which reduce to the Chapman-Jouget solution.

Solving for the structure of a ZND detonation can be considered a particular case of integrating a reaction network. For example, this 13 isotope alpha-chain network given on this web page simultaneously solves the ZND equations given above and the nuclear reaction equations. That is, the hydrodynamics and reaction network are fully coupled. Here is what the structure of a detonation looks like in 2D or 3D.

image
Helium detonation, Pressure
image
Helium detonation, Temperature
image
Subsonic until the CJ point


 



Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.