Cococubed.com ZND Detonations

Home

Astronomy research
Software instruments
Stellar equation of states
EOS with ionization
EOS for supernovae
Chemical potentials
Stellar atmospheres

Voigt Function
Jeans escape
Polytropic stars
Cold white dwarfs

Cold neutron stars
Stellar opacities
Neutrino energy loss rates
Ephemeris routines
Fermi-Dirac functions

Polyhedra volume
Plane - cube intersection
Coating an ellipsoid

Nuclear reaction networks
Nuclear statistical equilibrium
Laminar deflagrations
CJ detonations
ZND detonations

Fitting to conic sections
Unusual linear algebra
Derivatives on uneven grids

Supernova light curves
Exact Riemann solutions
1D PPM hydrodynamics
Hydrodynamic test cases
Galactic chemical evolution

Universal two-body problem
Circular and elliptical 3 body
The pendulum
Phyllotaxis

MESA
MESA-Web
FLASH

Zingale's software
Brown's dStar
GR1D code
Herwig's NuGRID
Meyer's NetNuc
Presentations
Illustrations
Public Outreach
Education materials

AAS Journals
2020 Celebration of Margaret Burbidge
2020 Digital Infrastructure
2021 MESA Marketplace
2021 MESA Summer School
2021 ASU Solar Systems
2021 ASU Energy in Everyday Life

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

Zeldovich, Von Neumann, and Doring (ZND, 1943) independently formed a set of differential equations for a 1D detonation which overcame the deficiencies of the Chapman-Jouget detonation model:
$$\dfrac{dP}{dx} = \dfrac{v \phi}{v^2 - c_s^2} \hskip 0.5in \dfrac{dv}{dx} = - \ \dfrac{1}{\rho} \ \dfrac{\phi}{v^2 - c_s^2} \hskip 0.5in \dfrac{d\rho}{dx} = \dfrac{1}{v} \ \dfrac{\phi}{v^2 - c_s^2} \label{eq1} \tag{1}$$ $$\phi = \left . \dfrac{\partial P}{\partial E} \right |_{\rho} \cdot \left [ \epsilon_{{\rm nuc}} - \left . \dfrac{\partial E}{\partial A} \right |_P \dfrac{dA}{dt} \right ] \label{eq2} \tag{2}$$ The ZND solution gives the:
• width of the fuel-ash region
• spatial variation of the hydrodynamic and thermodynamic variables
• the self-sustating detonation solution
• global integrals which reduce to the Chapman-Jouget solution.

Solving for the structure of a ZND detonation can be considered a particular case of integrating a reaction network, for example the helium detonations shown below. While my ZND solver is currently out of comission, one can explore Kevin Moore's ZND solver.

Here is the structure of a detonation in 2D and 3D.

Please cite the relevant references if you publish a piece of work that use these codes, pieces of these codes, or modified versions of them. Offer co-authorship as appropriate.