Abundance variables


Astronomy research
Software instruments
Bicycle adventures

AAS Journals
2019 JINA R-process Workshop
2019 MESA Marketplace
2019 MESA Summer School
2019 AST111 Earned Admission
Teaching materials
     Solar Systems Astronomy
     Energy in Everyday Life
     Customizing pgstar
     AST 111
     AST 113
     AST 112
     AST 114
     Geometry of Art and Nature
     Numerical Techniques
Education and Public Outreach

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.

$ \def\drvop#1{{\frac{d}{d{#1}}}} \def\drvf#1#2{{\frac{d{#1}}{d{#2}}}} \def\ddrvf#1#2{{\frac{d^2{#1}}{d{#2}^2}}} \def\partop#1{{\frac{\partial}{\partial {#1}}}} \def\ppartop#1{{\frac{\partial^2}{\partial {#1}^2}}} \def\partf#1#2{{\frac{\partial{#1}}{\partial{#2}}}} \def\ppartf#1#2{{\frac{\partial^2{#1}}{\partial{#2}^2}}} \def\mpartf#1#2#3{{\frac{\partial^2{#1}}{\partial{#2} \ {\partial{#3}}}}} $ A pdf of this note is avaliable.

Baryon number is an invariant. Define the abundance of species $Y_i$ by \begin{equation} Y_i = \frac{n_i}{n_B} = \frac{N_i}{N_B} \end{equation} where $N_i$ is the number of particles of isotope $i$, $N_B$ is the number of baryons, $n_i$ is the number density [cm$^{-3}$] of isotope $i$ and $n_B$ is baryon number density [cm$^{-3}$]. The number of baryons in isotope $i$ divided by the total number of baryons is the baryon fraction $X_i$, \begin{equation} X_i = Y_i \ A_i = \frac{n_i \ A_i}{n_B} \end{equation} where $A_i$ is the atomic mass number, the number of baryons in an isotope. Usually the baryon fraction is called the ``mass fraction''. Note \begin{equation} \sum X_i = \frac{n_B}{n_B} = 1 \end{equation} is invariant under nuclear reactions. Define the baryon density, in atomic mass units, as \begin{equation} \rho_B = n_B \ m_u = \frac{n_B}{N_A} \hskip 0.2in {\rm g \ cm}^{-3} \end{equation} where $m_u$ is the atomic mass unit [g] and $N_A$ is the Avogadro number [g$^{-1}]$ in a system of units where the atomic mass unit is {\it defined} as 1/12 mass of an unbound atom of $^{12}$C is at rest and in its ground state.

Mean atomic number \begin{equation} \overline{\rm A} = \frac{\sum n_i {\rm A}_i}{\sum n_i} = \frac{n_B}{\sum n_i} = \frac{\sum Y_i {\rm A}_i}{\sum Y_i} = \frac{1}{\sum Y_i} \end{equation} Mean charge \begin{equation} \overline{\rm Z} = \frac{\sum n_i {\rm Z}_i}{\sum n_i} = \frac{\sum Y_i {\rm Z}_i}{\sum Y_i} = \overline{\rm A} \sum Y_i {\rm Z}_i \end{equation} Electron to baryon ratio, where the second equality assumes full ionization \begin{equation} Y_e = \frac{n_e}{n_B} = \frac{\sum n_i Z_i}{n_B} = \sum Y_i Z_i = \frac{\overline{\rm Z}}{\overline{\rm A}} \end{equation} Neutron excess \begin{equation} \eta = \sum ({\rm N}_i - {\rm Z}_i) Y_i = \sum ({\rm A}_i - 2 {\rm Z}_i) Y_i = \sum {\rm A}_i Y_i - 2 Y_e = 1 - 2 Y_e \end{equation} Mean ion molecular weight \begin{equation} \mu_{{\rm ion}} = \overline{\rm A} \end{equation} Mean electron molecular weight \begin{equation} \mu_{{\rm ele}} = \frac{1}{Y_e} = \frac{\overline{\rm A}}{\overline{\rm Z}} \end{equation} Mean molecular weight \begin{equation} \mu = \left [ \frac{1}{\mu_{ion}} + \frac{1}{\mu_{ele}} \right ]^{-1} = \left [ \frac{1}{\overline{\rm A}} + Y_e \right ]^{-1} = \left [ \frac{1}{\overline{\rm A}} + \frac{\overline{\rm Z}}{\overline{\rm A}} \right ]^{-1} = \frac{\overline{\rm A}}{\overline{\rm Z} + 1} = \frac{ n_B}{\sum n_i + n_e} \end{equation}