*
Cococubed.com

26Al and 60Fe
From Supernovae Explosions

Home

Astronomy research
  Software Infrastructure:
     MESA
     FLASH
     STARLIB
     My codes
  White dwarf supernova:
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
     Compact object IMF
  Stars:
     Pre-SN variations
     MC white dwarfs
     SAGB
     Classical novae
     He shell convection
     Presolar grains
     He burn on neutron stars
     BBFH at 40 years
  Chemical Evolution:
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     Reaction networks
     Proton-rich NSE
     MC reaction rates
  Verification Problems:
     Validating an astro code
     Su-Olson
     Cog8
     Mader
     RMTV
     Sedov
     Noh
Software instruments
Presentations
Illustrations
Videos
Bicycle adventures

AAS Journals
2017 MESA Summer School
ASU+EdX AST111x
Teaching materials
Education and Public Outreach
2016 NSF SI2 PI Workshop


Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
Mikly Way Summary (2015):

image
Observed & Theory 60Fe/26Al ratio


Theory:
In this paper, we explore the current abundances, fluxes, and spatial distributions of two key gamma-ray radioactivities, 26Al and 60Fe using recently calculated yields for Type II supernovae, along with models for chemical evolution and the distribution of mass in the interstellar medium. The estimated steady state production rates are 2.0±1.0 Msun/Myr for 26Al and 0.75± 0.4 Msun/Myr for 60Fe. This corresponds to 2.2±1.1 Msun of 26Al and 1.7±0.9 Msun of 60Fe in the present interstellar medium. Predictions for the 60Fe mass distribution, total mass, and flux map are given, in particular a 60Fe/26Al flux ratio of 0.16 ± 0.12.

image
26Al profile for a 25 Msun model
image
60Fe profile for a 25 Msun model
image
26Al & 60Fe profiles together


Additional efforts from Limongi & Chieffi 2006.
image
26Al Yields
image
60Fe Yields
image
Sensitivities


Observations:
The gamma-ray lines of 60Fe were measured by Smith (2004) using RHESSI and then by Wang et al (2007) using INTEGRAL. Both observations yield an 60Fe/26Al flux ratio of 0.17±0.05. Bouchet et al (2015) refine the INTEGRAL estimates to 0.14±0.1.

image
RHESSI 26Al measurement
image
RHESSI 60Fe measurement
image
Integral 60Fe measurement
image
Observed 26Al fluxes
image
INTEGRAL 2015 map
image
Integral Map Zoom


Experiment:

image
60Fe decay scheme
image
60Fe lifetime measurement
image
60Fe(n,γ)61Fe cross section
image
26Al(n,α) measurement
image
26Al(n,p) measurement