moon_sleep150.gif
Cococubed.com


Coggeshall #8 Verification Problem

Home

Astronomy research
  Software Infrastructure:
     MESA
     FLASH
     STARLIB
     My codes
  White dwarf supernova:
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
     Compact object IMF
  Stars:
     Pop III JWST
     Pre-SN variations
     Monte Carlo white dwarfs
     SAGB stars
     Classical novae
     He shell convection
     Presolar grains
     He burn on neutron stars
     BBFH at 40 years
  Chemical Evolution:
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     Reaction networks
     Proton-rich NSE
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
     Su-Olson
     Cog8
     Mader
     RMTV
     Sedov
     Noh
Software instruments
Presentations
Illustrations
Videos
Bicycle adventures

AAS Journals
2017 MESA Marketplace
2017 MESA Summer School
2017 ASU+EdX AST111x
Teaching materials
Education and Public Outreach


Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
In this paper, this paper, and this paper, we discuss the analytic and numerical solutions for the Coggeshall #8 problem.

Coggeshall (1991) published a collection of analytic self-similar test problems, and "Coggeshall #8" or "Cog8" is the eighth one listed. The solution to this problem represents an adiabatic expansion plus heat conduction. The heat conduction's area weighted flux on each cell face is equal. That is, conduction moves as much energy into a cell as it removes. Thus, the answers with and without conduction look much the same.

The following code for the analytic solution are released to the public under LA-CC-05-101: cog8.f

image
radial heat & fluid flow
image
analytical and numerical
image
convergence study
image
evolution movie
image
evolution movie


Density uniform mesh:
image
density 200x200 cells
image
density 400x400 cells
image
density 800x800 cells
image
density error 200x200 cells
image
density error 400x400 cells
image
density error 800x800 cells
image
density asymmetry 200x200
image
density asymmetry 400x400
image
density asymmetry 800x800


Temperature and material speed on uniform mesh:
image
temperature asymmetry 200x200
image
temperature asymmetry 400x400
image
temperature asymmetry 800x800
image
speed asymmetry 200x200
image
speed asymmetry 400x400
image
speed asymmetry 800x800


Density adaptive mesh:
image
density 200x200 cells
image
density 400x400 cells
image
density 800x800 cells
image
density error 200x200 cells
image
density error 400x400 cells
image
density error 800x800 cells
image
density asymmetry 200x200
image
density asymmetry 400x400
image
density asymmetry 800x800