*
Cococubed.com

KIC 08626021
a variable white dwarf

Home

Astronomy research
  Software Infrastructure:
     MESA
     FLASH
     STARLIB
     My codes
  White dwarf supernova:
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
     Compact object IMF
  Stars:
     Pulsating white dwarfs
     Pop III with JWST
     Monte Carlo massive stars
     Neutrinos from pre-SN
     Pre-SN variations
     Monte Carlo white dwarfs
     SAGB stars
     Classical novae
     He shell convection
     Presolar grains
     He burn on neutron stars
     BBFH at 40 years
  Chemical Evolution:
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     12C(α,γ)16O Rate
     Proton-rich NSE
     Reaction networks
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
     Su-Olson
     Cog8
     Mader
     RMTV
     Sedov
     Noh
Software instruments
Presentations
Illustrations
Videos
Bicycle adventures

AAS Journals
2017 MESA Marketplace
2017 MESA Summer School
2017 ASU+EdX AST111x
Teaching materials
Education and Public Outreach


Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
The Impact of White Dwarf Luminosity Profiles on Oscillation Frequencies (2018)

KIC 08626021 is a pulsating DB white dwarf of considerable recent interest, and first of its class to be extensively monitored by Kepler for its pulsation properties. Fitting the observed oscillation frequencies of KIC 08626021 to a model can yield insights into its otherwise-hidden internal structure. Template-based white dwarf models choose a luminosity profile where the luminosity is proportional to the enclosed mass, $L_r \propto M_r$, independent of the effective temperature $T_{\rm eff}$. Evolutionary models of young white dwarfs with $T_{\rm eff} \gtrsim$ 25,000 K suggest neutrino emission gives rise to luminosity profiles with $L_r$ $\not\propto$ $M_r$.

In this paper we explore this contrast by comparing the oscillation frequencies between two nearly identical white dwarf models: one with an enforced $L_r \propto M_r$ luminosity profile and the other with a luminosity profile determined by the star's previous evolution history. We find the low order g-mode frequencies differ by up to $\simeq$ 70 $\mu$Hz over the range of Kepler observations for KIC 08626021.

This suggests that by neglecting the proper thermal structure of the star (e.g., accounting for the effect of plasmon neutrino losses), the model frequencies calculated by using an $L_r \propto M_r$ profile may have uncorrected, effectively-random errors at the level of tens of $\mu$Hz. A mean frequency difference of 30 $\mu$Hz, based on linearly extrapolating published results, suggests a template model uncertainty in the fit precision of $\simeq$ 12% in white dwarf mass, $\simeq$ 9% in the radius, and $\simeq$ 3% in the central oxygen mass fraction.


image



white dwarf structure
image
propagation diagram
image

mode frequency differences
image
weight function shifts

image
white dwarf cooling