Monte Carlo Massive Stars


Astronomy research
  Software Infrastructure:
     My codes
  White dwarf supernova:
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
     Compact object IMF
     Pulsating white dwarfs
     Pop III with JWST
     Monte Carlo massive stars
     Neutrinos from pre-SN
     Pre-SN variations
     Monte Carlo white dwarfs
     SAGB stars
     Classical novae
     He shell convection
     Presolar grains
     He burn on neutron stars
     BBFH at 40 years
  Chemical Evolution:
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     12C(α,γ)16O Rate
     Proton-rich NSE
     Reaction networks
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
Software instruments
Bicycle adventures

AAS Journals
2019 JINA R-process Workshop
2019 MESA Marketplace
2019 MESA Summer School
2019 AST111 Earned Admission
Teaching materials
Education and Public Outreach

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
The Impact of Nuclear Reaction Rate Uncertainties On The Evolution of Core-Collapse Supernova Progenitors (2018)

In this paper by Fields et al we explore properties of core-collapse supernova progenitors with respect to the composite uncertainties in the thermonuclear reaction rates by coupling the reaction rate probability density functions provided by the STARLIB reaction rate library with MESA stellar models.

We evolve 1000 15 M$_{\odot}$ models from the pre main-sequence to core O-depletion at solar and subsolar metallicities for a total of 2000 Monte Carlo stellar models. For each stellar model, we independently and simultaneously sample 665 thermonuclear reaction rates and use them in a MESA in situ reaction network that follows 127 isotopes from $^{1}$H to $^{64}$Zn. With this framework we survey the core mass, burning lifetime, composition, and structural properties at five different evolutionary epochs. At each epoch we measure the probability distribution function of the variations of each property and calculate Spearman Rank-Order Correlation coefficients for each sampled reaction rate to identify which reaction rate has the largest impact on the variations on each property.

We find that uncertainties in $^{14}$N$(p,\gamma)^{15}$O, triple-$\alpha$, $^{12}$C$(\alpha,\gamma)^{16}$O, $^{12}$C($^{12}$C,$p$)$^{23}$Na, $^{12}$C($^{16}$O,$p$)$^{27}$Al, $^{16}$O($^{16}$O,$n$)$^{31}$S, $^{16}$O($^{16}$O,$p$)$^{31}$P, and $^{16}$O($^{16}$O,$\alpha$)$^{28}$Si reaction rates dominate the variations of the properties surveyed. We find that variations induced by uncertainties in nuclear reaction rates grow with each passing phase of evolution, and at core H-, He-depletion are of comparable magnitude to the variations induced by choices of mass resolution and network resolution. However, at core C-, Ne-, and O-depletion, the reaction rate uncertainties can dominate the variation causing uncertainty in various properties of the stellar model in the evolution towards iron core-collapse.

STARLIB factor uncertainties
thermostat mechanism, quantified
probability distribution functions
spearmann rank order correlations