*
Cococubed.com


Monte Carlo White Dwarfs

Home

Astronomy research
  Software Infrastructure:
     MESA
     FLASH
     STARLIB
     My codes
  White dwarf supernova:
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
     Compact object IMF
  Stars:
     Pre-SN variations
     MC white dwarfs
     SAGB
     Classical novae
     He shell convection
     Presolar grains
     He burn on neutron stars
     BBFH at 40 years
  Chemical Evolution:
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     Reaction networks
     Proton-rich NSE
     MC reaction rates
  Verification Problems:
     Validating an astro code
     Su-Olson
     Cog8
     Mader
     RMTV
     Sedov
     Noh
Software instruments
Presentations
Illustrations
Videos
Bicycle adventures

AAS Journals
2017 MESA Marketplace
2017 MESA Summer School
2017 ASU+EdX AST111x
Teaching materials
Education and Public Outreach


Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
Properties Of Carbon-Oxygen White Dwarfs From Monte Carlo Stellar Models (2016)
In this paper by Fields et al we investigate properties of carbon-oxygen white dwarfs with respect to the composite uncertainties in the reaction rates using the stellar evolution toolkit, Modules for Experiments in Stellar Astrophysics (MESA) and the probability density functions in the reaction rate library STARLIB. These are the first Monte Carlo stellar evolution studies that use complete stellar models. Focusing on 3 M models evolved from the pre main-sequence to the first thermal pulse, we survey the remnant core mass, composition, and structure properties as a function of 26 STARLIB reaction rates covering hydrogen and helium burning using a Principal Component Analysis and Spearman Rank-Order Correlation. Relative to the arithmetic mean value, we find the width of the 95% confidence interval to be ΔM1TP ≈ 0.019 M for the core mass at the first thermal pulse, Δt1TP ≈ 12.50 Myr for the age, Δlog(Tc/K) ≈ 0.013 for the central temperature, Δlog(ρc /g cm-3) ≈ 0.060 for the central density, ΔYe,c ≈ 2.6×10-5 for the central electron fraction, ΔXc(22Ne) ≈ 5.8×10-4, ΔXc(12C) ≈ 0.392, and ΔXc(16O) ≈ 0.392. Uncertainties in the experimental 12C(α,γ)16O, triple-α, and 14N(p,γ)15O reaction rates dominate these variations. We also consider a grid of 1 to 6 M models evolved from the pre main-sequence to the final white dwarf to probe the sensitivity of the initial-final mass relation to experimental uncertainties in the hydrogen and helium reaction rates.

image
network
image
3 M HR
image
3 M kippenhahn
image
3 M thermal pulses
image
3 M mass of WDs
image
PCA matrix
image
Central Temp vs triple-α
image
carbon vs 12C(α,γ)
image
initial-final mass relation