![]() |
|
||||||
Home Astronomy research Software Infrastructure: MESA FLASH STARLIB My codes White dwarf supernova: Remnant metallicities Colliding white dwarfs Merging white dwarfs Ignition conditions Metallicity effects Central density effects Detonation density effects Tracer particle burning Subsonic burning fronts Supersonic burning fronts W7 profiles Massive star supernova: Rotating progenitors 3D evolution 26Al & 60Fe 44Ti, 60Co & 56Ni Yields of radionuclides Effects of 12C +12C SN 1987A light curve Constraints on Ni/Fe ratios An r-process Compact object IMF Stars: Pop III with JWST Monte Carlo massive stars Neutrinos from pre-SN Pre-SN variations Monte Carlo white dwarfs SAGB stars Classical novae He shell convection Presolar grains He burn on neutron stars BBFH at 40 years Chemical Evolution: Hypatia catalog Zone models H to Zn Mixing ejecta γ-rays within 100 Mpc Thermodynamics & Networks Stellar EOS 12C(α,γ)16O Rate Proton-rich NSE Reaction networks Bayesian reaction rates Verification Problems: Validating an astro code Su-Olson Cog8 Mader RMTV Sedov Noh Software instruments Presentations Illustrations Videos Bicycle adventures AAS Journals 2017 MESA Marketplace 2017 MESA Summer School 2017 ASU+EdX AST111x Teaching materials Education and Public Outreach Contact: F.X.Timmes my one page vitae, full vitae, research statement, and teaching statement. |
On The Observability Of Individual Population Iii Stars And Their Stellar-mass Black Hole Accretion Disks Through Cluster Caustic Transits
(2018)
In this paper by Windhost et al we summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-infrared surface brightness that may come from Population III stars and possible accretion disks around their stellar-mass black holes in the epoch of First Light, broadly taken from z $\simeq$ 7 - 17. Theoretical predictions and recent near-infrared power-spectra provide tighter constraints on their sky-signal. We outline the physical properties of zero metallicity Population III stars from MESA stellar evolution models through helium-depletion, and black hole accretion disks at z $\gtrsim$ 7. We assume that second-generation non-zero metallicity stars can form at higher multiplicity, so that black hole accretion disks may be fed by Roche-lobe overflow from lower-mass companions. We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next generation ground-based telescopes may observe for both Population III stars and their black hole accretion disks. Typical caustic magnifications can be $\mu$ $\simeq$ 10$^4$ - 10$^5$, with rise times of hours and decline times of $\lesssim$ 1 year for cluster transverse velocities of $v_T$ $\lesssim$ 1000 km/s. Microlensing by intracluster medium objects can modify transit magnifications, but lengthen visibility times. Depending on black hole masses, accretion-disk radii and feeding efficiencies, stellar-mass black hole accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require to monitor 3 - 30 lensing clusters to AB $\lesssim$ 29 mag over a decade.
|
||||||
|
---|