Proton-rich NSE


Astronomy research
  Software Infrastructure:
     My codes
  White dwarf supernova:
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
     Compact object IMF
     Pre-SN variations
     MC white dwarfs
     Classical novae
     He shell convection
     Presolar grains
     He burn on neutron stars
     BBFH at 40 years
  Chemical Evolution:
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     Reaction networks
     Proton-rich NSE
     MC reaction rates
  Verification Problems:
     Validating an astro code
Software instruments
Bicycle adventures

AAS Journals
2017 MESA Marketplace
2017 MESA Summer School
2017 ASU+EdX AST111x
Teaching materials
Education and Public Outreach

Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
Proton-rich Nuclear Statistical Equilibrium (2008)
Proton-rich material in a state of nuclear statistical equilibrium (NSE) is one of the least studied regimes of nucleosynthesis. One reason for this is that after hydrogen burning, stellar evolution proceeds at conditions of an equal number of neutrons and protons or at a slight degree of neutron-richness. Proton-rich nucleosynthesis in stars tends to occur only when hydrogen-rich material that accretes onto a white dwarf or a neutron star explodes, or when neutrino interactions in the winds from a nascent proto-neutron star or collapsar disk drive the matter proton-rich prior to or during the nucleosynthesis.

In this letter by Seitenzahl et al we solve the NSE equations for a range of proton-rich thermodynamic conditions. We show that cold proton-rich NSE is qualitatively different from neutron-rich NSE. Instead of being dominated by the Fe-peak nuclei with the largest binding energy per nucleon that have a proton-to-nucleon ratio close to the prescribed electron fraction, NSE for proton-rich material near freezeout temperature is mainly composed of 56Ni and free protons. We show how the differences and especially the large fraction of free protons arises from the minimization of the free energy as a result of a competition between the entropy and nuclear binding energy.

ρ=107 g/cc, T=9×109 K
ρ=107 g/cc, T=3.5×109 K.
Helmholtz free energy

NSE Codes
Open-source codes are avaliable from this link.