*
Cococubed.com


Supernova Remnant Metallicities

Home

Astronomy research
  Software Infrastructure:
     MESA
     FLASH
     STARLIB
     My codes
  White dwarf supernova:
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
     Compact object IMF
  Stars:
     Pop III JWST
     Pre-SN variations
     Monte Carlo white dwarfs
     SAGB stars
     Classical novae
     He shell convection
     Presolar grains
     He burn on neutron stars
     BBFH at 40 years
  Chemical Evolution:
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     Reaction networks
     Proton-rich NSE
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
     Su-Olson
     Cog8
     Mader
     RMTV
     Sedov
     Noh
Software instruments
Presentations
Illustrations
Videos
Bicycle adventures

AAS Journals
2017 MESA Marketplace
2017 MESA Summer School
2017 ASU+EdX AST111x
Teaching materials
Education and Public Outreach


Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
Observational evidence for high neutronization in supernova remnants: implications for Type Ia supernova progenitors (2017)

The physical process whereby a carbon-oxygen white dwarf explodes as a Type Ia supernova (SN Ia) remains highly uncertain. The degree of neutronization in SN Ia ejecta holds clues to this process because it depends on the mass and the metallicity of the stellar progenitor, and on the thermodynamic history prior to the explosion.

In this paper by Martínez-Rodríguez et al, we report on a new method to determine ejecta neutronization using Ca and S lines in the X-ray spectra of Type Ia supernova remnants (SNRs). Applying this method to Suzaku data of Tycho, Kepler, 3C 397 and G337.2-0.7 in the Milky Way, and N103B in the Large Magellanic Cloud, we find that the neutronization of the ejecta in N103B is comparable to that of Tycho and Kepler, which suggests that progenitor metallicity is not the only source of neutronization in SNe Ia.

We then use a grid of SN Ia explosion models to infer the metallicities of the stellar progenitors of our SNRs. The implied metallicities of 3C 397, G337.2-0.7, and N103B are major outliers compared to the local stellar metallicity distribution functions, indicating that progenitor metallicity can be ruled out as the origin of neutronization for these SNRs. Although the relationship between ejecta neutronization and equivalent progenitor metallicity is subject to uncertainties stemming from the $^{12}$C$\,$+$^{16}$O reaction rate, which affects the Ca/S mass ratio, our main results are not sensitive to these details.


image




Suzaku spectra
image
chromium/iron versus calcium/sulfer
image
calcium/sulfer versus metallicity
image



remnant and stellar metallicity distributions
image
calcium/sulfer histogram
image



with and without $^{12}$C$\,$+$^{16}$O





Constraining The Single-Degenerate Channel of Type Ia Supernovae With Stable Iron-Group Elements in SNR 3C 397 (2017)

Recent Suzaku X-ray spectra of SNR 3C 397 indicate enhanced stable iron-group element abundances of Ni, Mn, Cr, and Fe. Seeking to address key questions about the progenitor and explosion mechanism of 3C 397, in this paper by Dave et al, we compute nucleosynthetic yields from a suite of multidimensional hydrodynamics models in the near-Chandrasekhar mass, single-degenerate paradigm for supernova Type Ia.

Varying the progenitor white dwarf internal structure, composition, ignition, and explosion mechanism, we find the best match to the observed iron-peak elements of 3C 397 are dense (central density $\ge$ 6$\times$10$^{9}$ g cm$^{-3}$), low-carbon white dwarfs that undergo a weak, centrally-ignited deflagration, followed by a subsequent detonation. The amount of $^{56}$Ni produced is consistent with a normal or bright normal supernova Type Ia. A pure deflagration of a centrally-ignited, low central density ($\simeq$ 2$\times$10$^{9}$ g cm$^{-3}$) progenitor white dwarf, frequently considered in the literature, is also found to produce good agreement with 3C 397 nucleosynthetic yields, but leads to a subluminous SN Ia event, in conflict with X-ray linewidth data. Additionally, in contrast to prior work which suggested a large super-solar metallicity for the white dwarf progenitor for SNR 3C 397, we find satisfactory agreement for solar and sub-solar metallicity progenitors. We discuss a range of implications our results have for the single-degenerate channel.


image
2D gravitationally confined detonation
image
Ni/Fe, Mn/Fe, and Cr/Fe vs. observations of SNR 3C 397
image
$^{56}$Ni for each model and metallicity