moon_sleep150.gif
Cococubed.com

Su-Olson
Verification Problem

Home

Astronomy research
  Software Infrastructure:
     MESA
     FLASH
     STARLIB
     MESA-Web
     starkiller-astro
     My instruments
  White dwarf supernova:
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
     Compact object IMF
  Stars:
     Neutrino HR diagram
     Pulsating white dwarfs
     Pop III with JWST
     Monte Carlo massive stars
     Neutrinos from pre-SN
     Pre-SN variations
     Monte Carlo white dwarfs
     SAGB stars
     Classical novae
     He shell convection
     Presolar grains
     He burn on neutron stars
     BBFH at 40 years
  Chemical Evolution:
     Iron Pseudocarbynes
     Radionuclides in the 2020s
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     12C(α,γ)16O Rate
     Proton-rich NSE
     Reaction networks
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
     Su-Olson
     Cog8
     Mader
     RMTV
     Sedov
     Noh
Software instruments
Presentations
Illustrations
cococubed YouTube
Bicycle adventures
Public Outreach
Education materials

AAS Journals
AAS YouTube
2020 Celebration of Margaret Burbidge
2020 Digital Infrastructure
2021 MESA Marketplace
2021 MESA Summer School
2021 ASU Solar Systems
2021 ASU Energy in Everyday Life


Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
The Su-Olson problem consists of a one-dimensional, half-space, non-equilibrium Marshak wave. The radiative transfer model is a one-group diffusion approximation with a finite radiation source boundary condition, where the radiative and material fields are out of equilibrium. As the energy density of the radiation field increases, energy is transfered to the material. Su & Olson (1996) found a solution, to quadrature, for the distribution of radiative energy and material temperature as a function of spacetime. This solution is useful for verifying time-dependent radiation diffusion codes. This article, this article, and this article, discuss analytic and numerical solutions for the Su-Olson problem.

The tools in su_olson.tbz reproduce the tables in the Su & Olson article and provide solutions as a function of time and position.


image


image
photon and material temperatures
image
the three gammas


image
the three thetas
image
various integrands