moon_sleep150.gif
Cococubed.com


Su-Olson Verification Problem

Home

Astronomy research
  Software Infrastructure:
     MESA
     FLASH
     STARLIB
     My codes
  White dwarf supernova:
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
     Compact object IMF
  Stars:
     Pre-SN variations
     MC white dwarfs
     SAGB
     Classical novae
     He shell convection
     Presolar grains
     He burn on neutron stars
     BBFH at 40 years
  Chemical Evolution:
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     Reaction networks
     Proton-rich NSE
     MC reaction rates
  Verification Problems:
     Validating an astro code
     Su-Olson
     Cog8
     Mader
     RMTV
     Sedov
     Noh
Software instruments
Presentations
Illustrations
Videos
Bicycle adventures

AAS Journals
2017 MESA Marketplace
2017 MESA Summer School
2017 ASU+EdX AST111x
Teaching materials
Education and Public Outreach


Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
In this paper, this paper, and this paper, we discuss analytic and numerical solutions for the Su-Olson problem.

The Su-Olson problem is a one-dimensional, half-space, non-equilibrium Marshak wave problem. The radiative transfer model is a one-group diffusion approximation with a finite radiation source boundary condition, where the radiative and material fields are out of equilibrium. As the energy density of the radiation field increases, energy is transfered to the material. Su & Olson (1996) found a solution, to quadrature, for the distribution of radiative energy and material temperature as a function of spacetime. This solution is useful for verifying time-dependent radiation diffusion codes.

The following codes for the analytic solution are released to the public under LA-CC-05-101:
suo.f reproduces the Su & Olson paper's tables, and suo02.f gives the physical solutions.

image
Su-Olson settup
image
photon and material temperatures
image
evolution movie
image
the three gammas
image
the three thetas
image
various integrands


Radiation temperature uniform mesh:
image
Trad 200x200 cells
image
Trad 400x400 cells
image
Trad 800x800 cells
image
Trad error 200x200 cells
image
Trad error 400x400 cells
image
Trad error 800x800 cells
image
Trad asymmetry 200x200
image
Trad asymmetry 400x400
image
Trad asymmetry 800x800


Material temperature adaptive mesh:
image
Tmat 200x200 cells
image
Tmat 400x400 cells
image
Tmat 800x800 cells
image
Tmat error 200x200 cells
image
Tmat error 400x400 cells
image
Tmat error 800x800 cells
image
Tmat asymmetry 200x200
image
Tmat asymmetry 400x400
image
Tmat asymmetry 800x800