*
Cococubed.com


Convective, Rotating Progenitors

Home

Astronomy research
  Software Infrastructure:
     MESA
     FLASH
     STARLIB
     My codes
  White dwarf supernova:
     Remnant metallicities
     Colliding white dwarfs
     Merging white dwarfs
     Ignition conditions
     Metallicity effects
     Central density effects
     Detonation density effects
     Tracer particle burning
     Subsonic burning fronts
     Supersonic burning fronts
     W7 profiles
  Massive star supernova:
     Rotating progenitors
     3D evolution
     26Al & 60Fe
     44Ti, 60Co & 56Ni
     Yields of radionuclides
     Effects of 12C +12C
     SN 1987A light curve
     Constraints on Ni/Fe ratios
     An r-process
     Compact object IMF
  Stars:
     Pop III JWST
     Pre-SN variations
     Monte Carlo white dwarfs
     SAGB stars
     Classical novae
     He shell convection
     Presolar grains
     He burn on neutron stars
     BBFH at 40 years
  Chemical Evolution:
     Hypatia catalog
     Zone models H to Zn
     Mixing ejecta
     γ-rays within 100 Mpc
  Thermodynamics & Networks
     Stellar EOS
     Reaction networks
     Proton-rich NSE
     Bayesian reaction rates
  Verification Problems:
     Validating an astro code
     Su-Olson
     Cog8
     Mader
     RMTV
     Sedov
     Noh
Software instruments
Presentations
Illustrations
Videos
Bicycle adventures

AAS Journals
2017 MESA Marketplace
2017 MESA Summer School
2017 ASU+EdX AST111x
Teaching materials
Education and Public Outreach


Contact: F.X.Timmes
my one page vitae,
full vitae,
research statement, and
teaching statement.
Convective Properties Of Rotating Two-dimensional Core-collapse Supernova Progenitors - 2016

In this paper by Chatzopoulos et al We explore the effects of rotation on convective carbon, oxygen, and silicon shell burning during the late stages of evolution in a 20 Msub>☉ star. Using the Modules for Experiments in Stellar Astrophysics (MESA) we construct 1D stellar models both with no rotation and with an initial rigid rotation of 50% of critical. At different points during the evolution, we map the 1D models into 2D and follow the multidimensional evolution using the FLASH compressible hydrodynamics code for many convective turnover times until a quasi-steady state is reached. We characterize the strength and scale of convective motions via decomposition of the momentum density into vector spherical harmonics.

We find that rotation influences the total power in solenoidal modes, with a slightly larger impact for carbon and oxygen shell burning than for silicon shell burning. Including rotation in one-dimensional (1D) stellar evolution models alters the structure of the star in a manner that has a significant impact on the character of multidimensional convection. Adding modest amounts of rotation to a stellar model that ignores rotation during the evolutionary stage, however, has little impact on the character of resulting convection. Since the spatial scale and strength of convection present at the point of core collapse directly influence the supernova mechanism, our results suggest that rotation could play an important role in setting the stage for massive stellar explosions.


image
1D radial profiles
image
rotational velocity profiles
image
velocity & 16O mass fraction
image
velocity & 28Si mass fraction
image
reduced VSH power spectra
image
total VSH power