Connecting Nuclear Astrophysics with Exoplanets and Astrobiology

Frank Timmes

Outline:

1) Waterworld or desertworld: the case of 26Al & 60Fe

2) Non-solar abundances and the habitable zone
High-precision elemental and isotopic abundance measurements - Task 4

Injection into protoplanetary disks - Task 2a

Injection into molecular clouds - Task 2b

Chemical evolution of star clusters - Task 3

Nucleosynthesis - Task 1
How are key elements produced and delivered for

...elements that shape planetary formation
e.g., 26Al, 60Fe?

...elements that drive planetary processes
e.g., 40K, 235,238U, 232Th?

...biologically important elements
e.g., C, N, P, Fe, Mo?
What controls the volatile content of exoplanetary systems?

26Al and 60Fe: Sources of Heat

Differentiates and Devolatilizes Silicate Planetesimals

26Al \rightarrow 26Mg*
$t_{1/2} = 0.714 \pm 0.06$ Myr

60Fe \rightarrow 60Co* \rightarrow 60Ni*
$t_{1/2} = 2.62 \pm 0.04$ Myr
26Al was introduced in astrophysics by Harold Urey in 1955 as a heat source capable of melting chondritic meteorites having radii of 100-1000 km on million year time scales.

This idea was confirmed from measurements of excess 26Mg in the differentiated Pipliya Kalan meteorite by Srinivasan et al 1999.
Tentative Answer: The abundance of ^{26}Al and ^{60}Fe in a solar system controls volatile delivery to terrestrial planets.

Earth's water came from asteroids.

Heating by radioactive decay of ^{26}Al and ^{60}Fe devolatilizes asteroids.

If our solar system had 10 x more ^{26}Al and ^{60}Fe, Earth would likely have < 0.2 oceans. Desertworld.

If our solar system had 10 x less ^{26}Al and ^{60}Fe, Earth would likely have > 5 oceans. Waterworld.

Earth had the right amount of ^{26}Al and ^{60}Fe to be about half land and half water.
Young et al 2009 find the most reliable indicator of the presence of 26Al in unmixed core-collapse ejecta is a low, ~0.05, S/Si ratio.

Curiously, the bioessential element phosphorous reaches its maximum abundance in the same regions in massive stars.

Hwang et al. 2004
Follow the Elements

Astrobiology at Arizona State University
What impacts do nuclear physics and stellar abundance variations have on stellar habitable zones?

The high-quality spectra required for radial velocity planet searches are well suited to providing abundances for a wide array of elements in large samples of stars.

Dall et al 2010
Abundance ratios of the most common elements relative to Fe vary by more than a factor of two in planet host candidates.

Pagano et al, 2012
This level of variation has a substantial impact on the evolution of the host star and the extent of its habitable zone.

Young et al 2012
The effects of varying [O/Fe] over the observed range can vary the habitability lifetimes for some classes of orbits by gigayears.

Young et al, 2012
Nuclear Astrophysics - experimental, observational, and theoretical - can, and should, embrace opportunities to apply itself to exoplanets and astrobiology.

with apologies to
L. Frank Baum