Hunting the Progenitors of Supernovae Type Ia

Frank Timmes
Supernova Type Ia (SNIa) play a key role in stellar and galaxy evolution and cosmology

- Distance indicators
- Element factories
- Cosmic-ray accelerators
- Kinetic energy sources
- Endpoints of stellar binary evolution

SNIa occur at a rate of ~ 30/s in the observable universe, but identification of what is exploding remains unknown - this is the outstanding mystery in the field.
SNIIa are defined by their spectra:
1) the lack of hydrogen lines
2) a strong Si II absorption feature
Once defined, here are several observational characteristics which may help in the search for progenitors:

Nearly 90% of all SNIa form a homogeneous class in terms of their spectra, light curves, and peak absolute magnitudes.
Near maximum light, spectra are characterized by O-Ca at high velocity (8k-30k km s$^{-1}$).

In the late, nebular phase, the spectra are dominated by lines of iron.
There exist a number of correlations between different pairs of observables, including one between the absolute magnitude and the shape of the light curve.

![Graph showing correlations between Luminosity and Time](image)

- Expansion and Diffusion time scales about equal
- Optical light curve
- $^{56}\text{Ni} + ^{56}\text{Co}$ decay
- $\sim 0.6 \, M_\odot$ of ^{56}Ni for a typical SNIa
- γ-ray escape
Brighter is broader.

This can be used to correct for intrinsic variations in the peak luminosity to give a standard candle.

After correction, the dispersion in luminosity distance is $\leq 7\%$.

\[
M_V - 5 \log \left(\frac{h}{65} \right)
\]
Tycho Supernova Remnant: NASA’s Spitzer, Chandra, & Spain’s Calar Alto

- Green & Yellow - iron and silicon
- Blue - shocked electrons
- Red - dust

Age: 442 years
Distance: ~ 7500 ly
Diameter: ~ 0.8’ (18 ly)
Expansion: ~ 0.3”/year
A successful model starting from a carbon+oxygen white dwarf must make

0.1 - 1.0 M☉ ^{56}Ni for the light curve

0.2 - 0.4 M☉ Si, S, Ar, Ca for the spectrum

< 0.1 M☉ $^{54}\text{Fe} + ^{58}\text{Ni}$ for the nucleosynthesis

Not too much O close to ^{56}Ni for the spectrum

Allow for some diversity for fun
Planetary Nebula:
Tosses off Hydrogen and Helium Layers

Runs out of Helium fuel

Main Sequence

Helium Burning to Carbon

Helium Ignites

Red Giant

Carbon-Oxygen White Dwarf in 10 billion years

H → He

He

C+O

H

He

H He H He C+O
The relative frequency of these channels is unknown.
Standard paradigm single-degenerate pathway:

- accretion
- simmering
- ignition
- subsonic flame

Instabilities
detonation?
supernova

Hardy 2006
Dursi et al 2001
NKG 2004
Röpke 2001
Zingale et al 2006
LANL 1945
NASA
Standard double-degenerate merger pathway:

- **Binary birth**
 - Secondary star
 - Bridge
 - Primary star
 - Spiral arm

- **Common envelope #1**
 - Circumsecondary Disk

- **Common envelope #2**

Angular momentum loss

Surface detonation?

Supernova

Guillochon et al. 2010
A double-degenerate collision pathway:

triple star system

Newtonian dynamics

$e \geq 0.999999$

3 body problem

supernova

Katz et al 2013
Variations in the peak luminosity may originate in part from a scatter in the composition of the main-sequence stars that become white dwarfs.
A main-sequence star's initial metallicity comes from the CNO and 56Fe inherited from its ambient interstellar medium.

All the CNO piles up at 14N during hydrogen burning, because 14N(p,g) is the slowest step in the CNO cycle.

During helium burning all of the 14N is converted into 22Ne by 14N (a,g) 18F (β^+,ν_e) 18O (a,g) 22Ne.

Pileups at 14N and 22Ne have been repeatedly verified for ~40 years. This is standard stellar evolution.
Mass and charge conservation set the white dwarf’s neutron enrichment.

\[\sum_{i=1}^{n} X_i = 1 \quad Y_e = \sum_{i=1}^{n} \frac{Z_i}{A_i} X_i \]

\[X^{(22\text{Ne})} = 22 \left[\frac{X^{(12\text{C})}}{12} + \frac{X^{(14\text{N})}}{14} + \frac{X^{(16\text{O})}}{16} \right] \]

\[Y_e = \frac{10}{22} X^{(22\text{Ne})} + \frac{26}{56} X^{(56\text{Fe})} + \frac{1}{2} \left[1 - X^{(22\text{Ne})} - X^{(56\text{Fe})} \right] \]

Assuming the ^{22}Ne and ^{56}Fe are uniformly distributed.
SNIa models make most of their ^{56}Ni in nuclear statistical equilibrium between 0.2 - 0.8 M_{\odot}, where weak reactions don’t change the number of neutrons since they occur on time-scales longer than the explosion.

W7-like, Nomoto et al. 1984
If ^{56}Ni and ^{58}Ni are the only species in NSE, mass and charge conservation imply a linear relationship between the mass fraction of ^{56}Ni and Y_e:

$$X(^{56}\text{Ni}) = 1 - X(^{58}\text{Ni}) = 58Y_e - 28$$

We can set the final Y_e equal to the initial Y_e of the white dwarf since weak interactions are not dominant where most of the ^{56}Ni is made.

$$X(^{56}\text{Ni}) = 1 - 0.057 \frac{Z}{Z_\odot}$$
Explosion models confirm the analytical result.

\[M(^{56}\text{Ni}) = M(^{56}\text{Ni})_{Z=0} \left[1 - 0.057 \frac{Z}{Z_\odot} \right] M_\odot \]
Constraining a metallicity dependence is challenging:
1) assumes galaxy metallicity = supernova metallicity
2) may be a stronger dependence on mean stellar age

Observations find consistency with the analytical result, but the trend is smaller than predicted and there is considerable scatter.

Constraining a metallicity dependence is challenging:
1) assumes galaxy metallicity = supernova metallicity
2) may be a stronger dependence on mean stellar age
The SPIDER Network

Initial Focused Efforts:
- Massive Main Sequence Stars
- Evolved Massive Star Envelopes
- Red Giant Asteroseismology
- Carbon Burning Flames

<table>
<thead>
<tr>
<th>Node</th>
<th>ASU Arizona State University</th>
<th>UW University of Wisconsin</th>
<th>CU University of Colorado</th>
<th>UCSB University of California Santa Barbara</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Tools</td>
<td>MESA</td>
<td>GYRE</td>
<td>ASH CSS</td>
<td>MESA</td>
</tr>
</tbody>
</table>
If the composition of the white dwarf has an observable effect on the ^{56}Ni production and thus the SNIa light curve, it could have an effect on other elements as well.

From observed Si, S, Ca, and Fe abundances, we have developed a new tool which applies the QSE relations (in reverse!) to determine all the abundances and a measure of Y_e in the silicon group regions of individual SNIa.
The method begins with mass & charge conservation, and the constraints for a two-cluster QSE:

\[Y_n + Y_p + 28Y_{28\text{Si}} + 32Y_{32\text{S}} + 40Y_{40\text{Ca}} + 54Y_{54\text{Fe}} + 58Y_{58\text{Ni}} = 1 \]

\[Y_p + 14Y_{28\text{Si}} + 16Y_{32\text{S}} + 20Y_{40\text{Ca}} + 26Y_{54\text{Fe}} + 28Y_{58\text{Ni}} = Y_e \]

\[Y_{\text{SiG}} = Y_{28\text{Si}} + Y_{32\text{S}} + Y_{40\text{Ca}} \quad \quad Y_{\text{FeG}} = Y_{54\text{Fe}} + Y_{58\text{Ni}} \]
Then, from the defining QSE relations:

\[
\frac{Y_{A,Z}}{Y_{A',Z'}} = f(\rho, T) Y_p^{Z-Z'} Y_n^{A-A'} -(Z-Z')
\]

\[
f(\rho, T) = \frac{G_{A,Z}}{G_{A',Z'}} \left(\frac{\rho N_A}{\theta} \right)^{A-A'} \exp \left(\frac{B - B'}{kT} \right)
\]

\[
\theta = \left(\frac{m_u kT}{2\pi \hbar^2} \right)^{\frac{3}{2}}
\]
We derive our first (nearly trivial) result

\[\Phi(T) = \frac{Y_{28\text{Si}}}{Y_{32\text{S}}} \left(\frac{Y_{40\text{Ca}}}{Y_{32\text{S}}} \right)^{1/2} = \exp \left(\frac{-1.25}{T_9} \right) \]

Measuring \(\Phi \) at a single epoch from the abundance ratios allows a test of whether the SiG material was produced in a QSE state.

Measuring \(\Phi \) at multiple epochs when silicon features dominate the spectrum allows trends in the QSE temperature to be assessed.
Measurement of four quantities $Y_{28\text{Si}}$, $Y_{32\text{S}}/Y_{28\text{Si}}$, $Y_{40\text{Ca}}/Y_{32\text{S}}$, $Y_{54\text{Fe}}/Y_{28\text{Si}}$ is a sufficient basis to solve for all the abundances in the silicon-rich region of SNIa.

$$Y_e = Y_{28\text{Si}} \left[14 + 16 \frac{Y_{32\text{S}}}{Y_{28\text{Si}}} + 20 \frac{Y_{40\text{Ca}}}{Y_{32\text{S}}} \frac{Y_{32\text{S}}}{Y_{28\text{Si}}} + 26 \frac{Y_{54\text{Fe}}}{Y_{28\text{Si}}} + 28 \Psi \frac{Y_{32\text{S}}}{Y_{28\text{Si}}} \frac{Y_{54\text{Fe}}}{Y_{28\text{Si}}} \right]$$

Accurate determination of $Y_{28\text{Si}}$, $Y_{32\text{S}}/Y_{28\text{Si}}$, $Y_{40\text{Ca}}/Y_{32\text{S}}$, and $Y_{54\text{Fe}}/Y_{28\text{Si}}$ is sufficient to determine Y_e to $\sim 6\%$ because these abundances account for $\sim 94\%$ the QNSE composition.
Synthetic spectra for the W7-like models with 0 to 4 times solar 22Ne.
Hunting the Progenitors of Supernovae Type Ia

Advances (plus a little serendipity) over the next decade should enable us to decipher the progenitors of Supernovae Type Ia.

1) Different Si, S, Ca ratios
2) Tidal tails
3) Significant unburned carbon + oxygen
4) Early gamma-ray light curve or line profiles
5) Narrow HI in emission or absorption
6) Interaction with circumstellar medium in radio or x-rays
7) Frequency of SN Ia as a function of redshift